A. PENGERTIAN KOEFISIEN, VARIABEL, KONSTANTA, DAN SUKU
Di kelas VII kalian telah mempelajari mengenai bentukbentuk aljabar. Coba kalian ingat kembali materi tersebut, agar kalian dapat memahami bab ini dengan baik. Selain itu, kalian juga harus menguasai materi tentang KPK dari dua bilangan atau lebih dan sifat-sifat operasi hitung pada bilangan bulat. Perhatikan uraian berikut.
Bonar dan Cut Mimi membeli alat-alat tulis di koperasi sekolah. Mereka membeli 5 buku tulis, 2 pensil, dan 3 bolpoin. Jika buku tulis dinyatakan dengan x, pensil dengan y, dan bolpoin dengan z maka Bonar dan Cut Mimi membeli 5x + 2y + 3z. Selanjutnya, bentuk-bentuk 5x + 2y + 3z, 2x2, 4xy2, 5x2 – 1, dan (x – 1) (x + 3) disebut bentuk-bentuk aljabar. Sebelum mempelajari faktorisasi suku aljabar, marilah kita ingat kembali istilah-istilah yang terdapat pada bentuk aljabar.
1. Variabel
Variabel adalah lambang pengganti suatu bilangan yang belum diketahui nilainya dengan jelas. Variabel disebut juga peubah. Variabel biasanya dilambangkan dengan huruf kecil a, b, c, ... z.
2. Konstanta
Suku dari suatu bentuk aljabar yang berupa bilangan dan tidak memuat variabel disebut konstanta.
3. Koefisien
Koefisien pada bentuk aljabar adalah faktor konstanta dari suatu suku pada bentuk aljabar.
4. Suku
Suku adalah variabel beserta koefisiennya atau konstanta pada bentuk aljabar yang dipisahkan oleh operasi jumlah atau selisih.
a. Suku satu adalah bentuk aljabar yang tidak dihubungkan oleh operasi jumlah atau selisih.
Contoh: 3x, 4a2, –2ab, ...
b. Suku dua adalah bentuk aljabar yang dihubungkan oleh satu operasi jumlah atau selisih.
Contoh: a2 + 2, x + 2y, 3x2 – 5x, ...
c. Suku tiga adalah bentuk aljabar yang dihubungkan oleh dua operasi jumlah atau selisih.
Contoh: 3x2 + 4x – 5, 2x + 2y – xy, ...
Bentuk aljabar yang mempunyai lebih dari dua suku disebut suku banyak atau polinom.
Nanti, di tingkat yang lebih lanjut kalian akan mempelajari mengenai suku banyak atau polinom.
B. OPERASI HITUNG PADA BENTUK ALJABAR
1. Penjumlahan dan PenguranganSelanjutnya, jika Ujang diberi kakaknya 7 kelereng merah dan 3
kelereng putih maka banyaknya kelereng Ujang sekarang adalah 22x + 12y. Hasil ini diperoleh dari (15x + 9y) + (7x + 3y). Amatilah bentuk aljabar 3x2 – 2x + 3y + x2 + 5x + 10. Sukusuku 3x2 dan x2 disebut suku-suku sejenis, demikian juga sukusuku –2x dan 5x. Adapun suku-suku –2x dan 3y merupakan sukusuku tidak sejenis.
Suku-suku sejenis adalah suku yang memiliki variabel dan pangkat dari masing-masing variabel yang sama. Pemahaman mengenai suku-suku sejenis dan suku-suku tidak sejenis sangat bermanfaat dalam menyelesaikan operasi penjumlahan dan pengurangan dari bentuk aljabar. Operasi penjumlahan dan pengurangan pada bentuk aljabar dapat diselesaikan dengan memanfaatkan sifat komutatif, asosiatif, dan distributif dengan memerhatikan suku-suku yang sejenis. Coba kalian ingat kembali sifat-sifat yang berlaku pada penjumlahan dan pengurangan bilangan bulat. Sifat-sifat tersebut berlaku pada penjumlahan dan pengurangan bentuk aljabar.
Perhatikan uraian berikut ini.
Ujang memiliki 15 kelereng merah dan 9 kelereng putih. Jika kelereng merah dinyatakan dengan x dan kelereng putih dinyatakan dengan y maka banyaknya kelereng Ujang adalah 15x + 9y.
2. Perkalian
a. Perkalian suatu bilangan dengan bentuk aljabar
Coba kalian ingat kembali sifat distributif pada bilangan bulat.
Jika a, b, dan c bilangan bulat maka berlaku a(b + c) = ab + ac.
Sifat distributif ini dapat dimanfaatkan untuk menyelesaikan operasi perkalian pada bentuk aljabar.
Perkalian suku dua (ax + b) dengan skalar/bilangan k dinyatakan sebagai berikut.
k(ax + b) = kax + kb
b. Perkalian antara bentuk aljabar dan bentuk aljabar
Telah kalian pelajari bahwa perkalian antara bilangan skalar k dengan suku dua (ax + b) adalah k (ax + b) = kax + kb. Dengan memanfaatkan sifat distributif pula, perkalian antara bentuk aljabar suku dua (ax + b) dengan suku dua (ax + d) diperoleh sebagai berikut.
(ax + b) (cx + d) = ax(cx + d) + b(cx + d)
= ax(cx) + ax(d) + b(cx) + bd
= acx2 + (ad + bc)x + bd
Sifat distributif dapat pula digunakan pada perkalian suku dua dan suku tiga.
3. Perpangkatan Bentuk Aljabar
Coba kalian ingat kembali operasi perpangkatan pada bilangan bulat. Operasi perpangkatan diartikan sebagai operasi perkalian berulang dengan unsur yang sama. Untuk sebarang bilangan bulat a, Sekarang kalian akan mempelajari operasi perpangkatan pada bentuk aljabar.
4. Pembagian
Kalian telah mempelajari penjumlahan, pengurangan, perkalian, dan perpangkatan pada bentuk aljabar. Sekarang kalian akan mempelajari pembagian pada bentuk aljabar.
Telah kalian pelajari bahwa jika suatu bilangan a dapat diubah menjadi a = p q dengan a, p, q bilangan bulat maka p dan q disebut faktor-faktor dari
a. Hal tersebut berlaku pula pada bentuk aljabar.
C. PEMFAKTORAN BENTUK ALJABAR
Di kelas VII kalian telah mempelajari materi mengenai KPK dan FPB. Pada materi tersebut kalian telah mempelajari cara menentukan kelipatan dan faktor dari suatu bilangan. Coba ingat kembali cara menentukan faktor dari suatu bilangan.
D. OPERASI PADA PECAHAN BENTUK ALJABAR
1. Penjumlahan dan Pengurangan Pecahan Aljabar
Di kelas VII kalian telah mempelajari operasi penjumlahan dan pengurangan pada pecahan aljabar dengan penyebut suku satu. Sama seperti pada pecahan aljabar dengan penyebut suku satu, pada pecahan aljabar dengan penyebut suku dua dan sama dapat langsung dijumlah atau dikurangkan pembilangnya. Adapun pada penjumlahan dan pengurangan pecahan aljabar dengan penyebut berbeda dapat dilakukan dengan cara menyamakan penyebutnya terlebih dahulu menjadi kelipatan persekutuan terkecil (KPK) dari penyebut-penyebutnya.
Tidak ada komentar:
Posting Komentar